Guarantees of Riemannian Optimization for Low Rank Matrix Completion
نویسندگان
چکیده
We study the Riemannian optimization methods on the embedded manifold of low rank matrices for the problem of matrix completion, which is about recovering a low rank matrix from its partial entries. Assume m entries of an n× n rank r matrix are sampled independently and uniformly with replacement. We first prove that with high probability the Riemannian gradient descent and conjugate gradient descent algorithms initialized by one step hard thresholding are guaranteed to converge linearly to the measured matrix provided m ≥ Cκnr log(n), where Cκ is a numerical constant depending on the condition number of the measured matrix. The sampling complexity has been further improved to m ≥ Cκnr log(n) via the resampled Riemannian gradient descent initialization. The analysis of the new initialization procedure relies on an asymmetric restricted isometry property of the sampling operator and the curvature of the low rank matrix manifold. Numerical simulation shows that the algorithms are able to recover a low rank matrix from nearly the minimum number of measurements.
منابع مشابه
Guarantees of Riemannian Optimization for Low Rank Matrix Recovery
We establish theoretical recovery guarantees of a family of Riemannian optimization algorithms for low rank matrix recovery, which is about recovering an m × n rank r matrix from p < mn number of linear measurements. The algorithms are first interpreted as the iterative hard thresholding algorithms with subspace projections. Then based on this connection, we prove that if the restricted isometr...
متن کاملRobust Low-Rank Matrix Completion by Riemannian Optimization
Low-rank matrix completion is the problem where one tries to recover a low-rank matrix from noisy observations of a subset of its entries. In this paper, we propose RMC, a new method to deal with the problem of robust low-rank matrix completion, i.e., matrix completion where a fraction of the observed entries are corrupted by non-Gaussian noise, typically outliers. The method relies on the idea...
متن کاملLow-Rank Matrix Completion by Riemannian Optimization
The matrix completion problem consists of finding or approximating a low-rank matrix based on a few samples of this matrix. We propose a novel algorithm for matrix completion that minimizes the least square distance on the sampling set over the Riemannian manifold of fixed-rank matrices. The algorithm is an adaptation of classical non-linear conjugate gradients, developed within the framework o...
متن کاملLow-rank matrix completion by Riemannian optimization—extended version
The matrix completion problem consists of finding or approximating a low-rank matrix based on a few samples of this matrix. We propose a new algorithm for matrix completion that minimizes the least-square distance on the sampling set over the Riemannian manifold of fixed-rank matrices. The algorithm is an adaptation of classical non-linear conjugate gradients, developed within the framework of ...
متن کاملLow-rank tensor completion: a Riemannian manifold preconditioning approach
We propose a novel Riemannian manifold preconditioning approach for the tensor completion problem with rank constraint. A novel Riemannian metric or inner product is proposed that exploits the least-squares structure of the cost function and takes into account the structured symmetry that exists in Tucker decomposition. The specific metric allows to use the versatile framework of Riemannian opt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016